Monday, November 16, 2015

The Definite Integral (Ch 6)

We began looking at anti-derivatives in the last chapter, now we will look more closely and formally.  We need some new vocabulary, starting with another verb for finding the anti-derivative: integrating.

11/16  Post Ch 5 Test, enter a version of the RAM program (or look up a fancier one online - for
           example rsum.zip or riemann.zip at http://www.ticalc.org/pub/83plus/basic/math/calculus/ -
           and download it right into your calculator)
11/17  Area and Riemann Sums (6.1, 6.2)
           HW p.277-280/1, 4, 6-14, 19, 21, 28, 31-38, 40, 41  and  p.291/9-27 by 3's
11/18  Defining the Definite Integral and looking at Integration Properties (6.2, 6.3)
           CW Explorations on p. 274 & p.286  HW p.291-292/37-43 odd, 51-57 odd  and p.298-299/1-6
11/20  Average Value and the Mean Value Theorem for Integrals (6.3)
           HW p.299-300/7-10, 14-18, 37-42, 47

11/23  The Fundamental Theorem of Calculus and Antiderivatives (6.3, 6.4)
           HW p.299-300/19-35 odd, 49-51 and p.311/27-43 odd
11/24  Derivatives of Integrals with the Chain Rule (6.4)
           HW p.310-311/3-24 by 3's, 45-54
11/25  Half-day A C F H
11/26  Thanksgiving
11/27  Black Friday

11/30  Parent Conferences
12/01  Write test problems to review 
           HW p.311-313/55-64, 68-71, 73, 75-79
12/02  Trapezoidal Rule and Simpson's Rule (6.5)
           HW p.320-321/1, 3, 5-7, 9-11, 20, 21, 27, 30, and finish handout
12/04  Review and Extension (handout with answer key)

12/07  Ch 6 Test of the Definite Integral